ThS36.021_Một số tính chất của hàm tựa lồi
Nội dung đề tài: “Một số tính chất của hàm tựa lồi”
Lớp các hàm lồi và hàm lồi suy rộng đóng một vai trò quan trọng trong lý
thuyết tối ưu hoá. Hàm tựa lồi được nhiều nhà toán học quan tâm nghiên cứu
và thu được nhiều kết quả sâu sắc.
Trong [10] O.L. Mangasarian đã trình bày lí thuyết các hàm tựa lồi, hàm
giả lồi khả vi và mối quan hệ giữa hàm tựa lồi và các hàm lồi suy rộng liên
quan. D. Aussel [1] đã nghiên cứu các tính chất đặc trưng của các hàm tựa lồi
và giả lồi không trơn qua tính tựa đơn điệu và giả đơn điệu của dưới vi phân
của hàm đó và mối quan hệ giữa các khái niệm này. A. Daniilidis và N.
Hadjisavvas [3] nghiên cứu các hàm tựa lồi chặt và tựa lồi bán chặt không
trơn. Kết quả chỉ ra rằng một ánh xạ Lipschitz địa phương là tựa lồi bán chặt
hoặc tựa lồi chặt nếu và chỉ nếu dưới vi phân Clarke của nó tương ứng là tựa
đơn điệu bán chặt hoặc tựa đơn điệu chặt.
Luận văn tập trung trình bày các tính chất đặc trưng của các hàm tựa lồi,
giả lồi, tựa lồi chặt và tựa lồi bán chặt không trơn tương ứng qua tính tựa đơn
điệu, giả đơn điệu, tựa đơn điệu chặt và tựa đơn điệu bán chặt của dưới vi
phân của hàm đó.
Luận văn bao gồm phần mở đầu, hai chương, kết luận và danh mục các tài
liệu tham khảo.
Chương I . Hàm tựa lồi không trơn.
Trình bày các tính chất đặc trưng của các hàm tựa lồi và giả lồi không trơn
tương ứng qua tính tựa đơn điệu và giả đơn điệu của dưới vi phân của hàm
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
đó. Kết quả chỉ ra rằng hàm liên tục radian, nửa liên tục dưới f là giả lồi khi
và chỉ khi f là tựa lồi và thoả mãn điều kiện :
0 f x f có cực tiểu toàn cục tại x.
Chương II. Các hàm tựa lồi chặt và bán chặt không trơn.
Trình bày các tính chất đặc trưng của các hàm tựa lồi chặt và tựa lồi bán
chặt không trơn tương ứng qua tính tựa đơn điệu chặt và tựa đơn điệu bán
chặt của dưới vi phân của nó. Phần cuối chương trình bày một áp dụng chứng
minh sự tồn tại nghiệm của bài toán bất đẳng thức biến phân.
Tác giả xin được bày tỏ lòng biết ơn sâu sắc tới PGS – TS Đỗ Văn Lưu –
Viện toán học Việt Nam, người thầy đã tận tình hướng dẫn, giúp đỡ và
nghiêm khắc trong khoa học để tác giả hoàn thành bản luận văn. Tác giả cũng
xin trân trọng cảm ơn tập thể giảng viên Khoa Toán đã giảng dạy và tạo điều
kiện thuận lợi trong suốt quá trình tác giả học tập, nghiên cứu. Tác giả xin
chân thành cảm ơn các phòng ban chức năng và khoa toán trường Đại Học Sư
Phạm Thái Nguyên, các thầy cô giáo và bạn bè đồng nghiệp đã giúp đỡ rất
nhiều để tác giả hoàn thành bản luận văn này